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Lecture 6

1 Number Systems

Consider an infinite straight line; we mark the line into equal distance segments, with numbers
0, 1, 2, 3, . . . and −1,−2,−3, . . ., and so on. We think of every point on the line is a real number,
and the line is called the real line or real axis, denoted R. There is a natural ordering on R: for
two real numbers x, y ∈ R, if x is on the left of y, we write x < y or y > x. Also, x ≤ y indicates
that either x < y or x = y.

The integers are the whole numbers marked on the line; the set of integers is denoted by Z.
Fraction m

n with integers m,n can be marked on the line, they are called rational numbers. Real
numbers which are not rational are called irrational. For rational numbers a

b , c
d , they can be

added and multiplied as
a

b
+

c

d
=

ad + bc

bd
,

a

b
× c

d
=

ac

bd
.

Definition 1 (Addition and Multiplication of Real Numbers). For real numbers a, b, c ∈ R,

(1) a + b = b + a, ab = ba.

(2) a + (b + c) = (a + b) + c, a(bc) = (ab)c.

(3) a(b + c) = ab + ac.

(4) If a 6= 0, then there exists a unique real number x 6= 0 such that ax = 1; we write x = a−1 = 1
a

and
b

a
:= a−1b.

(5) If a < b, then a + c < b + c.

(4) If a < b and c > 0, then ac < bc.

Proposition 2. Between any two rational numbers there exists another rational number.

Proof. Let r, s be two distinct rational numbers such that r < s. We write r = a
b and s = c

d . Let
t = 1

2(r + s). Clearly, t = ad+bc
2bd is rational. Since 1

2s > 1
2r, then

t =
1
2
(r + s) =

1
2
r +

1
2
s >

1
2
r +

1
2
r = r,

t =
1
2
(r + s) =

1
2
r +

1
2
s <

1
2
s +

1
2
s = s.
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Proposition 3.
√

2 is irrational.

Proof. Suppose
√

2 is rational, say
√

2 = m
n , where m and n are integers having no common factors.

Then 2 = m2

n2 , i.e., m2 = 2n2. Clearly, m2 is even. So m must be even. Write m = 2k. Then
m2 = 4k2 = 2n2. It follows that n2 = 2k2 is even. By the same token, we see that n is even. Hence
m
n is not in reduced form. This is a contradiction.

Proposition 4. Let a be an irrational number and r a rational number. Then

(1) a + r is irrational, and

(2) if r 6= 0, then ar is irrational.

If a and b are distinct nonzero irrational real numbers then ab is irrational. (Wrong! Why?)

Proposition 5. Between any two real numbers there is an irrational number.

Proof. Let a and b be two real numbers with a < b. Choose a positive integer n such that n >
√

2
b−a .

Case 1: If a is rational, then a +
√

2
n is irrational, and

a < a +
√

2
n

< a +
√

2√
2/(b− a)

= b.

Case 2: If a is irrational, then a + 1
n is irrational, and

a < a +
1
n

< a +
√

2
n

< a +
√

2√
2/(b− a)

= b.

2 Decimals

Lecture 7

Proposition 6. Let x be a real number.

(1) If x 6= 1, then

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
.

(2) If |x| < 1, then

1 + x + x2 + x3 + · · · = 1
1− x

.

The decimal expression a0.a1a2a3 · · · (in base 10), where a0 is an integer, and a1, a2, . . . are
numbers from 0 to 9, is the real number

a0 +
a1

10
+

a2

102
+ · · · .

Proposition 7. Every real number x has a decimal expression

x = a0.a1a2a3 · · · .
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Proof. The real number x must lie between two consecutive integers, say, a0 and a0 + 1, so that

a0 ≤ x < a0 + 1.

Now we divide the interval [a0, a0 + 1] into 10 equal small intervals. Clearly, x lies in one of these
small intervals. So we can find an integer a1 between 0 and 9 inclusive so that

a0 +
a1

10
≤ x < a0 +

a1 + 1
10

.

Similarly, we divide the interval [a0 + a1
10 , a0 + a1+1

10 ] into 10 equal smaller intervals; then x lies in
one of these smaller intervals; and we can find an integer a2 between 0 and 9 inclusive so that

a0 +
a1

10
+

a2

102
≤ x < a0 +

a1

10
+

a2 + 1
102

.

Continuing this procedure, we obtain a sequence

a0 +
a1

10
+

a2

102
+ · · ·+ an

10n
,

which gets as close as we like to x when n is large enough. This is what we mean the decimal
expression a0.a1a2a3 · · · of x.

Example 1. Show that
√

3 ≈ 1.732.

Proof. Let x =
√

3. Since x2 = 3, then 12 = 1 < x2 < 4 = 22, so 1 < x < 2, thus a0 = 1.
Next, (1.7)2 = 2.89 < x2 < 3.24 = (1.8)2, then 1.7 < x < 1.8, we have a1 = 7. Similarly,
(1.73)2 = 2.9929 < x2 < 3.0276 = (1.74)2, then 1.73 < x < 1.74, we have a2 = 3. Since
(1.731)2 = 2.996361 < x2 < 3.003288 = (1.732)2, then 1.731 < x < 1.732, and a3 = 1. Note
that (1.7319)2 = 2.99947761 < x2 < 3.003288 = (1.732)2. We have 1.7319 < x < 1.732. Hence
x ≈ 1.732.

Question 1. Can the same real number have two different decimal expressions? If Yes, which
decimal expressions represent the same real number?

0.999 · · · =
9
10

+
9

102
+

9
103

+ · · ·

=
9
10

(
1 +

1
10

+
1

102
+ · · ·

)

=
9
10
· 1
1− 1/10

= 1.

Thus
1 = 1.000 · · · = 0.999 · · · .

Similarly,
369
1000

= 0.368999 · · · = 0.369000 · · · .

Proposition 8. If a real number x is expressed (in base 10) in two different expressions:

a0.a1a2a3 · · · and b0.b1b2b3 · · · ,

then one of these expressions ends in 999 · · · and the other ends in 000 · · · .
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Proof. Let k be the left most position where ak 6= bk, k ∈ Z≥0. Then a0 = b0, a1 = b1, . . .,
ak−1 = bk−1. Without loss of generality, we may assume ak > bk. Thus ak ≥ bk + 1. Since
x = a0.a1a2 · · · = b0.b1b2 · · · , we have

a0.a1a2 · · · ak00 · · · ≤ a0.a1a2 · · · = x = b0.b1b2 · · · ≤ b0.b1b2 · · · bk999 · · · .

That is,

a0 +
a1

10
+ · · ·+ ak−1

10k−1
+

ak

10k
≤ x ≤ b0 +

b1

10
+ · · ·+ bk−1

10k−1
+

bk

10k
+ 9

(
1

10k+1
+

1
10k+2

+ · · ·
)

.

It follows that

ak ≤ bk + 9
(

1
101

+
1

102
+ · · ·

)
= bk + 1 ≤ ak.

Hence ak = bk + 1, and

x = a0.a1a2 . . . ak000 · · · = b0.b1b2 . . . bk999 · · · .

We then have that a0.a1a2 · · · ends with 000 · · · and b0.b1b2 · · · ends with 999 · · · .
For rational numbers 18

7 , and 821, we have

18
7

= 2.571428571428571428 · · · = 2.571428,

8
21

= 0.380952380952380952 · · · = 0.380952.

Proposition 9. A real number x is rational if and only if its decimal expression is periodic.

Proof. Let x = m
n be a rational number in reduced form, where n is a positive integer. Do the

following division to have quotients and remainders:

m = q0n + r0, 0 ≤ r0 < n,
10r0 = q1n + r1, 0 ≤ r1 < n,
10r1 = q2n + r2, 0 ≤ r2 < n,
· · · · · · · · · · · · · · · · · · · · · · · ·

10rk−1 = qkn + rk, 0 ≤ rk < n,
10rk = qk+1n + rk+1, 0 ≤ rk+1 < n,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·



 l





steps ≤ n− 1

10rk+l−1 = qk+ln + rk+l, rk+l = rk,
10rk+l = qk+l+1n + rk+l+1, rk+1+1 = rk+1,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·



 l

...

Since the remainders dividing by n can be only 0, 1, 2, . . . , n − 1, the remainders must repeat
periodically. Thus qk+l+1 = qk+1, qk+l+2 = qk+2, . . .; that is, qa+il = qa for a ≥ k + 1.

m

n
= q0.q1q2 · · · qk qk+1qk+2 · · · qk+l︸ ︷︷ ︸

l

qk+l+1qk+l+2 · · · qk+2l︸ ︷︷ ︸
l

· · ·

= q0.q1q2 · · · qk qk+1qk+2 · · · qk+l︸ ︷︷ ︸
l

qk+1qk+2 · · · qk+l︸ ︷︷ ︸
l

· · ·

= q0.q1q2 · · · qkqk+1qk+2 · · · qk+l.
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It is clear that 1 ≤ l ≤ n. Moreover, if n ≥ 2, then l ≤ n− 1. In fact, if one of the remainders ri is
zero then all the following remainders are zero; so l = 1. Otherwise, all remainder ri are nonzero.
Of course, l ≤ n− 1.

Conversely, given a number x = a0.a1a2 . . . akq1q2 . . . ql having periodic decimal expression.
Then

x = a0 +
a1

10
+ · · ·+ ak

10k
+ r,

where

r =
1

10k

( q1

10
+ · · ·+ ql

10l

)
+

1
10k+l

( q1

10
+ · · ·+ ql

10l

)
+

1
10k+2l

( q1

10
+ · · ·+ ql

10l

)
+ · · ·

=
1

10k

( q1

10
+ · · ·+ ql

10l

) (
1 +

1
10l

+
1

102l
+ · · ·

)

=
1

10k

( q1

10
+ · · ·+ ql

10l

) 10l

10l − 1
.

Example 2.

1.618 = 1 +
6
10

+
1

102

(
1 +

8
10

+
1

102
+

8
103

+
1

104
+

8
105

+ · · ·
)

= 1 +
6
10

+
1

102
· 102

99
+

8
103

· 102

99

= 1 +
6
10

+
1
99

+
8

990
=

1602
990

=
89
55

.

Lecture 9

3 Inequalities

An inequality is a statement about real numbers involving one of the symbols >, ≥, <, or ≤. We
start with the following rules about inequalities. The following rules of real numbers are motivated
by the properties of the real axis – the set of real numbers.

Definition 10. Rules of Inequalities

1. For each x ∈ R, then either x < 0 or x = 0 or x > 0, and just one of these three is true.

2. If x < y, y < z, then x < z.

3. If x < y and c ∈ R, then x + c < y + c.

4. If x > 0, y > 0, then xy > 0.

5. If x < y, then −x > −y.

For two real numbers x, y, we use x ≤ y to denote either x < y or x = y. Analogously, x ≥ y
denotes either x > y or x = y.

Example 3. 1. If x < 0, then −x > 0. If x ≥ 0, then −x ≤ 0.

2. If x 6= 0, then x < 0 or x > 0, and x2 > 0.
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3. If x < y and u > 0, then ux < uy.

Proof. Since x < y, then x − x < y − x, that is, 0 < y − x. Thus u · 0 < u(y − x), that is,
0 < uy − ux. Hence, 0 + ux < uy − ux + ux, that is, ux < uy.

4. If x > 0, then 1
x > 0.

Proof. Suppose 1
x < 0. Then −1

x > 0. Thus x · −1
x > 0, that is, −1 > 0, this is a contradiction.

So 1
x ≥ 0. Since 1

x 6= 0, we conclude that 1
x > 0.

Example 4. Let x1, x2, . . . , xn ∈ R be nonzero. Assume k of them are negative and the rest are
positive. Then

x1x2 · · ·xn =
{

> 0 if k is even,
< 0 if k is odd.

Proof. Without loss of generality we may assume that x1, . . . , xk are negative and xk+1, . . . , xn are
positive. Then −x1, . . . ,−xk, xk+1, . . . , xn are all positive. Thus

(−1)kx1x2 · · ·xn = (−x1) · · · (−xk)xk+1 · · ·xn > 0.

If k is even, the above inequality means that x1x2 · · ·xn > 0. If k is odd, −x1x2 · · ·xn > 0; thus
x1x2 · · ·xn < 0.

Example 5. For which values of x is x < 3
x+2?

Answer. We cannot multiply x + 2 to both side as x + 2 may not be all positive or all negative.
instead, we do

x− 3
x + 2

− x < 0 ⇐⇒ x(x + 2)− 3
x + 2

=
(x + 3)(x− 1)

x + 2
< 0.

To have the product of the three terms x+3, x− 1, 1
x+2 to be negative, we have two situations: (i)

one of the three is negative and the other two are positive; (ii) all three are negative. In the former
case, we have

(1) x + 3 < 0, x− 1 > 0, and x + 2 > 0, that is, x < −3, x > −1, x > −2. No such value x.
(2) x + 3 > 0, x− 1 < 0, x + 2 > 0, that is, x > −3, x < 1, x > −2. Then −2 < x < 1.
(3) x + 3 > 0, x− 1 > 0, x + 2 < 0, that is, x > −3, x > 1, x < −2. No such value x.

In the latter case,

x + 3 < 0, x− 1 < 0, x + 2 < 0 ⇐⇒ x < −3, x < 1, x < −2 ⇐⇒ x < −3.

So our answer is x < −3 or −2 < x < 1, that is x ∈ (−∞, 3) ∪ (−2, 1).

Example 6. Show that for all real numbers x we have x2 + 3x + 3 > 0.

Proof. Note that x2 + 3x + 3 =
(
x + 3

2

)2 + 3
4 . Since

(
x + 3

2

)2 ≥ 0 and 3
4 > 0, then

(
x + 3

2

)2 + 3
4 ≥

3
4 > 0. So x2 + 3x + 3 > 0.

The modulus of a real number x is

|x| =
{

x if x ≥ 0,
−x if x < 0.

Example 7. For a positive real number r, |x| < r means −r < x < r; |x| ≤ r means −r ≤ x ≤ r.
For a, r ∈ R with r > 0, we have

|x− a| < r ⇔ a− r < x < a + r; |x− a| ≤ r ⇔ a− r ≤ x ≤ a + r.
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4 Rational Powers

Theorem 11 (Definition). Let n be a positive integer. For each positive real number b, there exists
a unique positive real number x such that xn = b. We write the number x in terms of b as

x = b
1
n .

Let b be a positive real number b > 0. For rational numbers m
n ∈ Q with n > 0 and m ∈ Z,

we define the rational power (also known as fractional power) of b to m
n as the positive real

number
b

m
n := (b

1
n )m.

We need to show that b
m
n is well-defined when m

n is not in reduced form. Let m
n be in reduced form

and consider mk
nk with k ∈ Z+. For the positive integer b

1
n , there exists a unique positive integer a

such that ak = b
1
n , that is, a = (b

1
n )

1
k . Let us write y = b

1
nk , that is, ynk = b. Thus

ank =
[
(b

1
n )

1
k
]nk =

[(
(b

1
n )

1
k
)k]n = (b

1
n )n = b.

This means that y = a. Therefore

b
mk
nk = (b

1
nk )mk = ymk = amk = (ak)m =

(
b

1
n
)m = b

m
n .

For instance, 7−
13
5 = (7

1
5 )−13 = 1

( 5√7)13
.

Proposition 12 (Power Rules). Let x, y ∈ R+ and p, q ∈ Q. Then

(a) xpxq = xp+q.

(b) (xp)q = xpq.

(c) (xy)p = xpyp.

Proof. (a) We first assume that p, q ∈ Z. It is trivial when p = 0 or q = 0. If p, q > 0, then

xpxq = x · · ·x︸ ︷︷ ︸
p

x · · ·x︸ ︷︷ ︸
q

= x · · ·x︸ ︷︷ ︸
p+q

= xp+q.

If p > 0, q < 0, then
xpxq = x · · ·x︸ ︷︷ ︸

p

/
x · · ·x︸ ︷︷ ︸
−q

= xp−(−q) = xp+q.

It is similar when p < 0, q > 0 and when p, q < 0. Now Let p = m
n , q = h

k . Then

xpxq = x
m
n x

h
k = x

mk
nk x

nh
nk =

(
x

1
nk )mk

(
x

1
nk

)nh =
(
x

1
nk

)mk+nh = x
mk+nh

nk = xp+q.

(b) We first establish the rule for p, q ∈ Z. It is obviously true when p = 0 or q = 0. If
p > 0, q > 0, it is trivial. If p > 0, q < 0, then (xp)q = 1

(xp)−q = 1
x−pq = xpq. If p < 0, q > 0, then

(xp)q =
(

1
x−p

)q = 1
x−pq = xpq. If p, q < 0, then (xP )q = 1/( 1

x−p )−q = 1/ 1
(x−p)−q = 1/ 1

xpq = xpq.
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Let p = m
n , q = h

k with m,n, h, k ∈ Z. It follows from Theorem 11 that there exists a positive
real number a such that x = ank, that is, a = x

1
nk , and there exists a positive real number b such

that ak = b
1
n . Then ank = (ak)n = b. So b = x, that is, ak = x

1
n . Thus (x

1
nk )k = x

1
n . Therefore

(xp)q = (x
m
n )

h
k = [(x

mk
nk )

1
k ]h =

[(
(x

1
nk )mk

) 1
k
]h =

[(
((x

1
nk )m)k

) 1
k
]h

=
[(

x
1

nk
)m]h =

(
x

1
nk

)mh = x
mh
nk = xpq.

(c) It is trivial to establish the rule for p ∈ Z. Let p = m
n . Then

xpyp = (x
1
n )m(y

1
n )m = (x

1
n y

1
n )m =

[(
(x

1
n y

1
n )n

) 1
n
]m =

[
(x

1
n )n(y

1
n )n

]m
n = (xy)p.

5 Complex Numbers

A complex number z is a combination of real numbers written in the form

z = a + bi,

where the addition and multiplication are the same as the operations of algebraic terms, with an
additional rule i2 = −1; a is called the real part of z, and b the imaginary part, and we write

a = Re(z), b = Im(z).

We denote by C the set of all complex numbers.
For any real number a, it is automatically a complex number with Im(a) = 0; we write a instead

of a+0i without mentioning the zero imaginary part. The real number 0 is still the zero in complex
numbers as 0 + z = z for any complex number z; the real number 1 is still the unit for complex
number as 1z = z for any complex number z. For each complex number z = a + bi, the complex
number z̄ = a − bi is called the conjugate of z, and |z| =

√
a2 + b2 is called the modulus of z;

|z|2 = zz̄ = z̄z = a2 + b2.
The minus of z is defined as a complex number w such that z + w = 0, and it is denoted by

−z. If z = a + bi, then −z = −a − bi. The subtract of a complex number w from a complex
number z is defined as

z − w = z + (−w).

Similarly, the inverse of a complex number z(6= 0) is defined as a complex number w such that
zw = 1; the inverse of z is denoted by 1

z or z−1. Since 0w = 0 for any w ∈ C, there is no (complex)
inverse for 0. If z = a + bi 6= 0, then zz−1 = 1; multiplying both sides by z̄ = a− bi, we have

z̄zz−1 = z̄, i.e. |z|2z̄ = (a2 + b2)z−1 = z̄.

Hence
z−1 =

z̄

|z|2 =
a

a2 + b2
− b

a2 + b2
i.

Thus for complex numbers w and z with z 6= 0, the division w
z is defined as

w

z
= wz−1.

If z = a + bi and w = c + di, then

w

z
=

wz̄

|z|2 =
(c + di)(a− bi)

a2 + b2
=

ac + bd

a2 + b2
+

ad− bc

a2 + b2
i.
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6 De Moivre’s Rule

For complex number z = a + bi, let r =
√

a2 + b2 = |z|. Then a = r cos θ and b = r sin θ, and z can
be written as

z = r(cos θ + i sin θ).

Theorem 13. Let z1 = r1(cos θ1 + i sin θ1), z2 = r1(cos θ2 + i sin θ2). Then

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Proof. Recall the trigonometric formulas:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2, sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.

Then

z1z2 = r1r2[cos θ1 + i sin θ1)(cos θ2 + i sin θ2]
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)]
= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Lecture 10

Corollary 14. Let z = r(cos θ + i sin θ). Then for any integer n,

zn = rn(cos nθ + i sinnθ).

Proof. For positive integer n it is easy to apply the De Moivre’s rule. Note that

z−1 =
z̄

zz̄
=

1
r
(cos θ − i sin θ) = r−1[cos(−θ) + i sin(−θ)] = r1(cos θ1 + i sin θ1),

where r1 = r−1 and θ1 = −θ. Then for positive integer n,

z−n = rn
1 (cos nθ1 + i sinnθ1) = r−n

(
cos(−nθ) + i sin(−nθ)

)
.

Definition 15. For any angle θ the complex number cos θ + i sin θ is denoted by eiθ, i.e.,

eiθ = cos θ + i sin θ.

Recall the trigonometric functions cos θ and sin θ are defined by

cos θ =
x

r
, sin θ =

y

r
.

where x2 + y2 = r2.

Theorem 16.
eiθ1eiθ2 = ei(θ1+θ2).

Example 8. Computer (−1 +
√

3i)20.
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Let α = −1 +
√

3i. Then α = 2
(
cos 2π

3 + i sin 2π
3

)
. Thus

α20 = 220

(
cos

40π

3
+ i sin

40π

3

)
= 220

(
cos

4π

3
+ i sin

4π

3

)
= 219(−1−

√
3i).

Example 9. Deriving trigonometric formulas. Consider (cos θ + i sin θ)3 = cos 3θ + i sin 3θ. Let
a = cos θ, b = sin θ. Then

(a + bi)3 = (a2 − b2 + 2abi)(a + bi)
= (a2 − b2)a− 2ab2 + (2a2b + a2b− b3)i
= a3 − 3ab2 + (3a2b− b3)i.

Thus
cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ.

Similarly,
sin 3θ = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

Proposition 17. (a) If z = reiθ, then z̄ = re−iθ.
(b) Let z1 = r1e

iθ1 and z2 = r2e
iθ2. Then z1 = z2 if, and only if, r1 = r2 and θ1 = θ2 + 2kπ for

some k ∈ Z.

Proof. (a) is obvious. (b) If z1 = z2, then r1 = r2, and 1 = z1/z2 = ei(θ1−θ2). Hence θ1 − θ2 = 2kπ
for some k ∈ Z. The other part is obvious.

7 Roots of unity

Definition 18. For any positive integer n, let w = e
2πi
n ; the nth roots of unity are the complex

numbers
1, w, w2, . . . , wn−1.

They are evenly distributed on the unit circle.

Example 10. For n = 2, they are 1,−1. For n = 4, they are 1, i,−1,−i. For n = 3, they are

1, e
2πi
3 , e

4πi
3 .

Theorem 19. For the nth root of unity w = e
2πi
n with n ≥ 2,

1 + w + w2 + · · ·+ wn−1 = 0.

Proof. Since wn = 1 and 1− w 6= 0, then

(1− w)(1 + w + · · ·+ wn−1) = 1− wn = 0.

Hence 1 + w + · · ·+ wn−1 must be zero.

When a complex number z = a + bi is interpreted as an vector or force from the origin (0, 0)
to the position (a, b), the physical meaning of the above identity means that the sum effect of the
forces 1, w, w2, . . . , wn−1 cancels each other at the origin.

Lecture 11
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8 Cubic Equations (optional)

The general cubic equation may be written as

x3 + ax2 + bx + c = 0. (1)

Let x = x − a
3 . Then x3 = (y − a/3)3 = y3 − ay2 + (a2/3)y − a3/27, y2 = x2 − (2a/3)y + a2/9.

Substitute x = y − a/3 into (1); the equation becomes the form

y3 + 3hy + k = 0. (2)

Let y = u + v. Then

y3 = u3 + v3 + 3u2v + 3uv2 = u3 + v3 + 3uv(u + v) = u3 + v3 + 3uvy.

This means that the equation of the form y3−3uvy− (u3 +v3) = 0 readily has a solution y = u+v.
So we set

h = −uv, k = −(u3 + v3).

Since v = −h/u, then v3 = −h3/u3. Thus k = −(u3 − h3/u3) becomes

u6 + ku3 − h3 = 0,

which is a quadratic equation in u3. Then u3 as

u3 =
−k +

√
k2 + 4h3

2
.

Thus

v3 = −k − u3 =
−k −√k2 + 4h3

2
.

Therefore we obtain a solution

y = u + v =
3

√
−k +

√
k2 + 4h3

2
+

3

√
−k −√k2 + 4h3

2
.

There are three cubic roots for u3 = −k+
√

k2+4h3

2 and also three cubic roots for v3 = −k−√k2+4h3

2 .
So theoretically there are nine possible values to be the solutions; but there are only three solutions,
some of them are the same.

Let u be a cubic root of −k+
√

k2+4h3

2 , and let ω = e2πi/3. Then the other two cubic roots are
uω, uω2. Therefore the solutions for (2) are given by

u− h

u
, uω − hω2

u
, uω2 − hω

u
.

Example 11. Consider the equation

x3 − 3x + 2 = 0.

Since h = −1, k = 2, we have

u3 =
−k +

√
k2 + 4h3

2
= −1.

11



So we have u = −1, thus the three solutions are given by

u− h

u
= −2,

uω − hω2

u
= −ω − ω2 = 1− (1 + ω + ω2) = 1,

uω2 − hω

u
= −ω2 − ω = 1.

We may also solve the problem directly by the factorization (x− 1)(x− 1)(x + 2) = 0.

Example 12. Consider the equation

x3 − 6x− 6 = 0.

We have h = −2 and k = −6. Thus

u3 =
−k +

√
k2 + 4h3

2
= 4.

So u = 3
√

4. Thus

x1 = u− h

u
= 41/3 + 2/41/3 = 22/3 + 21/3,

x2 = uω − hω2

u
= (21/3 + 22/3)ω + (2−1/3 + 2−2/3)−1ω2,

x3 = uω2 − hω

u
= (2−1/3 + 2−2/3)−1ω + (21/3 + 22/3)ω2.

9 Fundamental Theorem of Algebra

Theorem 20. Every polynomial equation of degree at leat 1 has a root in C.

Theorem 21. Every polynomial of degree n factories as a product of linear polynomials, and has
exactly n roots (counted with multiplicity) in C.

Proposition 22. Let α1, . . . , αn be the roots of the equation

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0.

Then
s1 = α1 + α2 + · · ·+ αn = −an−1

s2 =
∑

i<j

αiαj = an−2,

s3 =
∑

i<j<k

αiαjαk = −an−3,

· · · ,

sk =
∑

i1<i2<···<ik

αi1αi2 · · ·αik = (−1)kan−k,

· · · ,

sn = α1α2 · · ·αn = (−1)na0.
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Example 13. Find a cubic equation with roots 2 + i, 2− i, and 3.

s1 = α1 + α2 + α3 = 7,

s2 = α1α2 + α1α3 + α2α3 = 17,

s3 = α1α2α3 = 15.

(x− 3)(x2 − 4x + 5) = x3 − 7x2 + 17x− 15 = 0.

Example 14. Let α and β be roots of equation x2 − 5x + 9 = 0. Find a quadratic equation with
roots α2 and β2.

The quadratic equation is of the form

x2 − (α2 + β2)x + α2β2 = 0.

Since α + β = 5 and αβ = 9, we have 52 = (α + β)2 = α2 + β2 + 2αβ = α2 + β2 + 18. Then
α2 + β2 = 7, α2β2 = 81. Thus

x2 − 7x + 81 = 0.
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