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Lecture 6

1 Number Systems

Consider an infinite straight line; we mark the line into equal distance segments, with numbers
0,1,2,3,... and —1,—2,-3,..., and so on. We think of every point on the line is a real number,
and the line is called the real line or real axis, denoted R. There is a natural ordering on R: for
two real numbers x,y € R, if x is on the left of y, we write z < y or y > x. Also, z < y indicates
that either x < y or z = y.

The integers are the whole numbers marked on the line; the set of integers is denoted by Z.
Fraction 7 with integers m,n can be marked on the line, they are called rational numbers. Real
numbers which are not rational are called irrational. For rational numbers ¢, ¢, they can be

added and multiplied as
a ¢ ad+be a ¢ ac

b d” bd 0 b d b
Definition 1 (Addition and Multiplication of Real Numbers). For real numbers a, b, c € R,

(1) a+b=b+a, ab=ba.
2) a+(b+c)=(a+b)+ec albe)= (abd)e.
(3) a(b+c) = ab+ ac.
(4)

4) If a # 0, then there exists a unique real number  # 0 such that ax = 1; we write x = a~! = é
and .
—:=a b
a

(5) If a < b, thena+c<b+ec.

(4) If a < b and ¢ > 0, then ac < be.

Proposition 2. Between any two rational numbers there exists another rational number.

Proof. Let r,s be two distinct rational numbers such that r < s. We write r = { and s = 5. Let

t= %(r + s). Clearly, t = “62[2';0 is rational. Since %s > %r, then
1 1

1 1 1
t=—-(r+s)==zr+=s>-r+-r=m,

2 2 2772 2
t—1(+)—1+1<14ﬂ'—
_2r S —27‘ 28 28 28—8.



Proposition 3. /2 is irrational.

Proof. Suppose v/2 is rational, say v/2 = ™, where m and n are integers having no common factors.

Then 2 = ZL—;, i.e., m? = 2n?. Clearly, m? is even. So m must be even. Write m = 2k. Then

m? = 4k? = 2n?. It follows that n? = 2k? is even. By the same token, we see that n is even. Hence

% is not in reduced form. This is a contradiction. O

Proposition 4. Let a be an irrational number and v a rational number. Then
(1) a+r is irrational, and
(2) if r #0, then ar is irrational.
If @ and b are distinct nonzero irrational real numbers then ab is irrational. (Wrong! Why?)

Proposition 5. Between any two real numbers there is an irrational number.

3

Proof. Let a and b be two real numbers with a < b. Choose a positive integer n such that n > ﬁ.
Case 1: If a is rational, then a + % is irrational, and

V2 V2

a<a+-—<a+-——=——=0b

n V2/(b - a)

Case 2: If @ is irrational, then a + % is irrational, and

1 2 2
a<a+n<a+\n[<a+\f:b

V2/(b—a)

O
2 Decimals
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Proposition 6. Let x be a real number.
(1) If x # 1, then
1 — gntl
l+z+a’+ - +a"=—"—
1—=z
(2) If |x| <1, then
2 3 1
l4+z+2"+2"+--- = .
1—=
The decimal expression ag.ajazas--- (in base 10), where ag is an integer, and aj,as,... are

numbers from 0 to 9, is the real number

+ A2y

(1/ —_— —_— e,
10 " 102
Proposition 7. Fvery real number x has a decimal expression

Tr = ag.aijagzag - - - .



Proof. The real number x must lie between two consecutive integers, say, ag and ag + 1, so that
ag < x <ag—+ 1.

Now we divide the interval [ag, ag + 1] into 10 equal small intervals. Clearly, x lies in one of these
small intervals. So we can find an integer a; between 0 and 9 inclusive so that

al a1+1
— <z .
ag—i—lo_x ag + 10

Similarly, we divide the interval [ag + §, ao + “11‘51] into 10 equal smaller intervals; then z lies in

one of these smaller intervals; and we can find an integer as between 0 and 9 inclusive so that

+ B crcag+ 24
Qa -— — x Qa —
0770 " 102 0710 " 102

Continuing this procedure, we obtain a sequence

al a9 (079
TR TR T
which gets as close as we like to x when n is large enough. This is what we mean the decimal
expression ag.ajagas--- of x. O

Example 1. Show that /3 ~ 1.732.

Proof. Let © = /3. Since 22 = 3, then 12 =1 < 22 < 4 =22, s01 < z < 2, thus a9 = 1.
Next, (1.7)%2 = 2.89 < 22 < 3.24 = (1.8)2, then 1.7 < = < 1.8, we have a; = 7. Similarly,
(1.73)2 = 2.9929 < 2?2 < 3.0276 = (1.74)%, then 1.73 < z < 1.74, we have az = 3. Since
(1.731)% = 2.996361 < 2% < 3.003288 = (1.732)2, then 1.731 < z < 1.732, and a3 = 1. Note
that (1.7319)? = 2.99947761 < 2? < 3.003288 = (1.732)%2. We have 1.7319 < = < 1.732. Hence
r ~ 1.732. ]

Question 1. Can the same real number have two different decimal expressions? If Yes, which
decimal expressions represent the same real number?

9 9 9
_ 9 1+ L + ! +
10 10 102
9 1
= — —— =1
10 1-1/10
Thus
1=1.000---=0.999---.
Similarly,
369
m—0.368999-~—0.369()00--~.

Proposition 8. If a real number x is expressed (in base 10) in two different expressions:
ap.aijaszas - - - and bo.b1b2b3 ey

then one of these expressions ends in 999 --- and the other ends in 000 - - - .



Proof. Let k be the left most position where ar # bi, kK € Z>o. Then ag = by, a1 = by, ...,
ag—1 = bp_1. Without loss of generality, we may assume ag > bi. Thus ap > by + 1. Since
T = ag.a1as - - - = bg.b1by - - -, we have

ap.a1ag - - -akOO- N S ap.a1ag -+ =& = bo.blbg s S bg.blbg . 'bk999 LRI

That is,

aj Ap—1 af b1 bk,1 bk 1 1
S — <z <h I T Loy —— 4 —— ).
R T T e T TR T S Ti <1ok+1 T

It follows that

1 1
Hence a; = b, + 1, and
Tr = ag.aijay . .. akOOO e = bo.blbg ce bk999 R
We then have that ag.ajao - - - ends with 000--- and bg.b1bo - -+ ends with 999---. O

For rational numbers 1—78, and 821, we have

1—78 = 2.571428571428571428 - - - = 2.571428,

% = 0.380952380952380952 - - - = 0.380952.

Proposition 9. A real number x is rational if and only if its decimal expression is periodic.

Proof. Let x = 7% be a rational number in reduced form, where n is a positive integer. Do the
following division to have quotients and remainders:

m = qn+ro, 0<7ro<n,
10rg = qn+4+r;, 0<r; <n,
10y = gn+ry, 0<ry<n,
e e e steps <n—1
10rg_1 = qen+rg, 0<r, <n,
10ry = qeean+7k41, 0< 11 <m, pl
...... e )
0rgt1-1 = Qern + T4, Tkl = Tk
107k+1 = Qkt1+170 + Thti+1,  Th1+1 = Th+1s 1
Since the remainders dividing by n can be only 0,1,2,...,n — 1, the remainders must repeat
periodically. Thus qrii41 = Grs1, Qrrive = Qry2, - - - that is, guyi = o for a > k + 1.
m

ﬁ = qo-9192 9k 9k+19k+2 * * * Qk+1 e+1+19k+14+2 * - - Gk+20

l l
= 40-9192 " " " 4k k+19k+2 " * " 9k+1 9k+19k+2 " * " Qk+1 " "

l l
= qo-9192 " ' " qkqr+19Kk+2 " " Gk+1-




It is clear that 1 <[ < n. Moreover, if n > 2, then [ < n — 1. In fact, if one of the remainders r; is
zero then all the following remainders are zero; so [ = 1. Otherwise, all remainder r; are nonzero.
Of course, I <n — 1.

O

Conversely, given a number x = ag.a1a2...a,rq1q2 - - - q having periodic decimal expression.
Then

al ag
$:a0+ﬁ+"'+170k+7’,
where
1 rq qz) 1 (m q;) 1 (q1 qz)
r= 10’6(10+ o) T o T T T \ig T i)
1 /rqn QZ) 1 1
= — (4. 2V (14+ =4+ 4+...
10k(10+ +1ol +1ol+1021+
1 oq @n) 10!
10k (10+ +101 100 —1°
Example 2.

_ 6 1 8 1 8 1 8
1618 = 14+ —4+ — 14+ —+ —+ — 4+ — + — 4 ...
618 +10+102<+10+102+103+104+105+ )
6+ 1 102+8 102
10 102 99 ' 103 99
6 1 8 1602 89

= 14— 4 — 4 > = _ 22
+10+99+990 990 55

= 1+
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3 Inequalities

An inequality is a statement about real numbers involving one of the symbols >, >, <, or <. We
start with the following rules about inequalities. The following rules of real numbers are motivated
by the properties of the real axis — the set of real numbers.

Definition 10. Rules of Inequalities
1. For each z € R, then either z < 0 or £ = 0 or = > 0, and just one of these three is true.
2. fx <y, y <z then x < 2.
. Ifr<yandce R, thenx+c<y+ec.
4. If z > 0,y > 0, then zy > 0.
5. If x <y, then —z > —y.

For two real numbers z,y, we use x < y to denote either x < y or x = y. Analogously, z > y
denotes either z > y or x = y.

Example 3. 1. If z <0, then —z > 0. If x > 0, then —x < 0.

2. If 2 #0, then < 0 or x > 0, and 22 > 0.



3. If x <y and u > 0, then uzr < uy.

Proof. Since x < y, then x —x < y — z, that is, 0 < y — z. Thus u -0 < u(y — x), that is,
0 < uy — ux. Hence, 0 + ux < uy — uzr + ux, that is, ur < uy. ]

4. If z > 0, then 1 > 0.

Proof. Suppose i < 0. Then _71 > 0. Thus z- _71 > 0, that is, —1 > 0, this is a contradiction.
So % > 0. Since % # 0, we conclude that % > 0. O

Example 4. Let x1,x2,...,2, € R be nonzero. Assume k of them are negative and the rest are
positive. Then
Tidy - = { >0 %fk %s even,
<0 if kis odd.

Proof. Without loss of generality we may assume that x1,.. .,z are negative and xgy1,..., 2, are
positive. Then —x1, ..., —2k, Lx+1,-. ., Ty are all positive. Thus

(=1)Fzizo - xp = (—21) - (=) Tpg1 - - - Ty > 0.

If k is even, the above inequality means that x1xo---x, > 0. If k is odd, —z1z9- -z, > 0; thus
T1To - Ty < 0. O

Example 5. For which values of z is z < Q%Q?
Answer. We cannot multiply = + 2 to both side as = + 2 may not be all positive or all negative.
instead, we do

x—i—aﬁ<0 = 3:(95+2)—3: (z+3)(z—1)

< 0.
T+ 2 T+ 2 T+ 2

To have the product of the three terms z +3, x — 1, %ﬁ to be negative, we have two situations: (i)
one of the three is negative and the other two are positive; (ii) all three are negative. In the former
case, we have
(1) x+3<0,2z—1>0,and z+2 >0, that is, z < =3, z > —1, z > —2. No such value z.
(2)x+3>0,z—1<0,z+2>0,thatis, z > -3,z <1, 2> —2. Then -2 <z < 1.
B)z+3>0,2—1>0,x+2<0, that is, x > =3, > 1, z < —2. No such value z.
In the latter case,

r+3<0,z-1<0,2+2<0 <= zz<-3 z<]l,r<-2 <+ x<-3
So our answer is ¢ < —3 or —2 < z < 1, that is € (—00,3) U (—2,1).
Example 6. Show that for all real numbers = we have 2 4+ 3z + 3 > 0.

Proof. Note that x? + 3z + 3 = (x + %)2 + %. Since (x + %)2 >0 and % > 0, then (x + %)2 +

3
4
3>0. Soz?+3z+3>0.

v

The modulus of a real number z is

| = xz ifx >0,
=Y —z ifz<o.

Example 7. For a positive real number r, |z| < r means —r < z < r; |z| < r means —r < x < 7.
For a,r € R with » > 0, we have

z—al<r & a—r<z<a+r; |[z—al<r o a-r<z<a+r.



4 Rational Powers

Theorem 11 (Definition). Let n be a positive integer. For each positive real number b, there exists
a unique positive real number x such that x™ = b. We write the number x in terms of b as

T =bn.
Let b be a positive real number b > 0. For rational numbers 7+ € Q with n > 0 and m € Z,

we define the rational power (also known as fractional power) of b to * as the positive real

number )

bn = (bn)™.
We need to show that b is well-defined when % is not in reduced form. Let % be in reduced form
and consider %’j with k € Z,. For the positive integer b%, there exists a unique positive integer a

such that af = b%, that is, a = (b%)% Let us write y = bﬁ, that is, y"* = b. Thus

This means that y = a. Therefore

For instance, 7% = (7%

Proposition 12 (Power Rules). Let x,y € Ry and p,q € Q. Then
(a) 2Pz = xPHa,
(b) (a7)1 = a7

(c) (zy)? = aPyP.

Proof. (a) We first assume that p,q € Z. It is trivial when p =0 or ¢ = 0. If p,q > 0, then

xpxq:l‘"'$$"‘l’:$"'x:$p+q,
=
p q p+q

If p>0,q <0, then
l'pxq:x...x/l‘...x:xp_(_‘n :mp-l—q.
p —q

It is similar when p < 0,¢ > 0 and when p,q < 0. Now Let p="", ¢ = % Then

(b) We first establish the rule for p,q € Z. It is obviously true when p = 0 or ¢ = 0. If
p > 0,q > 0, it is trivial. If p > 0,¢ < 0, then (zP)? = ﬁ = L. =2 If p < 0,g > 0, then

(aP)1 = () = % xP4, If p,q < 0, then (z¥)9 = 1/(90%)"1 = 1/7(:”_,1,)_(1 =1/4; = aPd.

P —-pq




Let p= 7, q= % with m,n, h, k € Z. It follows from Theorem 11 that there exists a positive

real numbelr1 a such that z = o™, that is, a = ajﬁ, and there eixists a posiltive real1 number b such
that a* = bn. Then a"* = (a¥)" = b. So b = z, that is, a* = xn». Thus (z7F)¥ = z=. Therefore

(a)1 = (@F)F = [(@%)F] = [((@7)™) 5] = [(((@e)m)F)F])"

[
= [(@%)"]" = (@) =B =

(c) Tt is trivial to establish the rule for p € Z. Let p = . Then

uy
1 1 1
aPyP = (z=)"(y

(@)™ (y=)"] ™ = (zy)P.

3[3

3=
SN—
3
I
—~
&
3=
<
3=
SN—
3
I
—
—~
—
8
3
<
3|~
SN—
3
~—
3=
[
3
I

5 Complex Numbers

A complex number z is a combination of real numbers written in the form
z=a-+ bi,

where the addition and multiplication are the same as the operations of algebraic terms, with an
additional rule i2 = —1; a is called the real part of z, and b the imaginary part, and we write

a=Re(z), b=Im(z).

We denote by C the set of all complex numbers.

For any real number a, it is automatically a complex number with Im(a) = 0; we write a instead
of a4+ 0¢ without mentioning the zero imaginary part. The real number 0 is still the zero in complex
numbers as 0 4+ z = z for any complex number z; the real number 1 is still the unit for complex
number as 1z = z for any complex number z. For each complex number z = a + bi, the complex
number Z = a — bi is called the conjugate of z, and |z| = va? + b? is called the modulus of z;
|22 = 22 = 2z = a® + V2.

The minus of z is defined as a complex number w such that z + w = 0, and it is denoted by
—z. If z = a+ bi, then —2z = —a — bi. The subtract of a complex number w from a complex
number z is defined as

z—w=z+4+(—w).
Similarly, the inverse of a complex number z(# 0) is defined as a complex number w such that
zw = 1; the inverse of z is denoted by % or z~1. Since Ow = 0 for any w € C, there is no (complex)
inverse for 0. If z = a + bi # 0, then zz~! = 1; multiplying both sides by Z = a — bi, we have

Zzzl =z, ie. ]2\22 = (a2 + b2)z*1 — 3.
Hence
—~1 z a b .
=5 = - i.
|z[2 a?+b% a4 b2
Thus for complex numbers w and z with z # 0, the division % is defined as
w
— =wz !
z

If z=a+ bi and w = ¢+ di, then
w  wz (c+di)(a—0bi) ac+bd ad-—bc.

|22 a? + b? P TR i




6 De Moivre’s Rule

For complex number 2z = a + bi, let 7 = va? + b> = |z|. Then a = rcosf and b = rsin6, and 2 can
be written as
z =r(cosf +isinb).

Theorem 13. Let z; = ri(cosfy +isinby), zo = r1(cosbs + isinby). Then
2129 = r172[c0s(01 + 62) 4 isin(f; + 62)].
Proof. Recall the trigonometric formulas:
cos(01 + 62) = cos By cos s — sin by sin By, sin(fy + 62) = cos Oy sin Oy + sin 61 cos O5.
Then

z1z9 = rire[cosfi + isinfy)(cosbe + isin bs]
= r1r2[(cos by cos by — sin Oy sin O2) + i(cos Oy sin O2 + sin 61 cos 6]
= rirafcos(01 + 03) + isin(6y + 62)].

O
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Corollary 14. Let z = r(cos@ +isin6). Then for any integer n,
2" =r"(cosnf + isinnd).
Proof. For positive integer n it is easy to apply the De Moivre’s rule. Note that
P zi_z = %(0059 —isinf) = rYcos(—0) + isin(—0)] = ri(cos @) + isinb,),
where 71 = 7~ ! and 6; = —6. Then for positive integer n,
27" =r{(cosnb +isinnb,) =r"" (cos(—n@) + isin(—nQ)) :

O

Definition 15. For any angle 6 the complex number cos 6 + isin é is denoted by €%, i.e.,

e = cosO + isin 6.

Recall the trigonometric functions cos and sin 6 are defined by

x ) y
cosf = —, sinf ==,
r r

where 22 + y? = 2.

Theorem 16.
67:01 €i92 — 6i(91+92).

Example 8. Computer (—1 + v/37)%.



Let « = —1 + v/3i. Then o = 2 ((:os%7r + 7sin %’T) Thus

40 40 4 4
o?? = 2% <cos Tﬂ + ¢sin 37T> = 2% <cos g + ¢sin ;) =219(—1 - V3i).

Example 9. Deriving trigonometric formulas. Consider (cos + isin )3 = cos 36 + isin360. Let
a =cosf, b=sinf. Then

(a+bi)3 = (a®—b*+ 2abi)(a+ bi)
= (a® - b?)a — 2ab® + (2a*b + b — b%)i
= a®—3ab® + (3a%b — b*)i.

Thus
cos 36 = cos® @ — 3cosfsin? 0 = 4cos® 0 — 3cosb.

Similarly,
sin36 = 3 cos® Osinf — sin® 0 = 3sinf — 4sin 6.

Proposition 17. (a) If z = re”, then z = re™*.

(b) Let z1 = 1 and zp = r9e™2. Then 21 = 2o if, and only if, 11 = ro and 01 = Oy + 2k for
some k € 7.

Proof. (a) is obvious. (b) If z; = 29, then r; = r9, and 1 = 21 /29 = ¢i01=02) Hence 0 — 0y = 2k
for some k € Z. The other part is obvious. ]

7 Roots of unity

Definition 18. For any positive integer n, let w = e%; the nth roots of unity are the complex
numbers

They are evenly distributed on the unit circle.

Example 10. For n = 2, they are 1, —1. For n = 4, they are 1,4, —1, —i. For n = 3, they are

Theorem 19. For the nth root of unity w = e with n > 2,
I+w+w? 4+ +w" =0
Proof. Since w™ =1 and 1 —w # 0, then
1-—w)(l+w+ - F+w" ) =1-uw"=0.
Hence 1 4+ w + - - - +w™ ! must be zero. O

When a complex number z = a + bi is interpreted as an vector or force from the origin (0,0)
to the position (a,b), the physical meaning of the above identity means that the sum effect of the
forces 1,w,w?,...,w" ! cancels each other at the origin.

Lecture 11
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8 Cubic Equations (optional)
The general cubic equation may be written as
3 2 _
z° +ax® +bxr+c=0. (1)

Let 2 = 2 — %. Then 2* = (y — a/3)° = y* — ay® + (a*/3)y — a*/27, y* = 2* — (2a/3)y + a*/9.
Substitute z = y — a/3 into (1); the equation becomes the form

y3 4+ 3hy + k = 0. (2)
Let y = u +v. Then
y? = u® +v® + 3uPv + 3uv? = ud + 0¥ 4+ 3uv(u + v) = P + 03 + 3uvy.

This means that the equation of the form 3> — 3uvy — (u® +v3) = 0 readily has a solution y = u+v.
So we set
h=—uv, k=—(u®+0v%).

Since v = —h/u, then v3 = —h3/u3. Thus k = —(u® — h3/u?) becomes
b + ku® — b3 =0,
which is a quadratic equation in u3. Then u? as

W —k + VE% +4h3
= 5 ,

Thus

—k — VIZ+ 4h3

3 3
=—k—u =
v u 5

Therefore we obtain a solution

WO i/_k+\/k2+4h3+i/_k_\/k2+4h3
B B 2 2 '

There are three cubic roots for u3 = =kEVk+4h? V§2+4h3 and also three cubic roots for v3 = =k=Vk +4h? Vl2“2+4h$.
So theoretically there are nine possible values to be the solutions; but there are only three solutions,
some of them are the same.
Let u be a cubic root of =kEvki+ah? W, and let w = €2™/3. Then the other two cubic roots are
uw, uw?. Therefore the solutions for (2) are given by
h hw? 5  hw

U — —, Uw — —, uw — —.
U U U

Example 11. Consider the equation
3 —
z°—3rx+2=0.

Since h = —1, k = 2, we have
3 —k+VE2+4R3
5 =

11



So we have u = —1, thus the three solutions are given by

h
u—— = -2,
u
h 2
uw—i:—w—w2:l—(l+w—|—w2):1,
u
h
uw? — = =1,
u

We may also solve the problem directly by the factorization (x — 1)(x — 1)(x + 2) = 0.
Example 12. Consider the equation

23— 6z —6=0.
We have h = —2 and k = —6. Thus

S Tk Vk? 4+ 4h3
= 5 =

4.

So u = v/4. Thus
xl = — ﬁ — 41/3 + 2/41/3 — 22/3 + 21/3’
u

2
Ty = UW — hi = (21/3 + 22/3)w + (2_1/3 + 2_2/3)_1w2,
U

73 = uw?® — hﬂ _ (2—1/3 + 2—2/3)—1w i (21/3 i 22/3)w2.
U

9 Fundamental Theorem of Algebra

Theorem 20. Every polynomial equation of degree at leat 1 has a root in C.

Theorem 21. FEvery polynomial of degree n factories as a product of linear polynomials, and has
exactly n roots (counted with multiplicity) in C.

Proposition 22. Let a1, ...,a, be the roots of the equation

"+ a1z -+ ajr +ag = 0.

Then
st=a1t+ay+ -+ ap = —ap-1
89 = E Q0 = Ap—2,
1<j
83 = E QOO = —Ap—3,
1<j<k
)
_ . = (—1)F
Sk = Qi Qg+ + - Oy = ( ) An—k,
11 <t <--<tg

)

Sp = arag -y = (—1)"ag.

12



Example 13. Find a cubic equation with roots 2 + ¢, 2 — i, and 3.
s1=a1+ay+a3 =7,

So = ajag + ajag + asag = 17,
S§3 — (X1 (o3 — 15.
(x —3)(2? —da+5) =2° - T2? + 17z — 15 = 0.

Example 14. Let o and (3 be roots of equation 22 — 5z +9 = 0. Find a quadratic equation with
roots a? and 2.
The quadratic equation is of the form

2% — (@® + %)z + B = 0.
Since a + 3 = 5 and aff = 9, we have 52 = (a + 3)?2 = o + 32 + 223 = o® + %2 + 18. Then

a?+ 32 =7, o?3% = 81. Thus
2 —Tx +81=0.
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